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SUMMARY

Structural theory and analogous electrical circuits are developed
for stiffened shells with flexible rings. By assumption, the forces
that a shell (consisting of stringers and skin) and a ring can exert on
each other are directed along their common line of intersection. As a
consequence the shell and the rings can be treated separately.

First an electrical analogy is developed for a circular shell with
a straight axis and variable radius. This analogy is extended to non-
circular cylinders. Next an electrical analogy is derived for rings with
varlable radii of curvature; a simplified clrcuit for circular rings is
also presented. The simplifications that occur when the rings are assumed
to be rigld are discussed. Finally results are given for two sample
problems solved on an analog computer. The second problem concerns a
cantilever conical shell and illustrates the manner in which the shell
and ring circuits are Interconnected.

INTRODUCTION

The type of shell considered in this paper has an elongated shape
and consists of a thin skin supported by stringers and rings. In
analyzing such shells it is the nearly universal practice to replace the
elastic supporting rings by rigld bulkheads in order to simplify the
analysis. This will not be done in this paper.

The means of analysis to be used in this paper is an electric analog
computer of the "direct analogy" type. Any complicated system, if it is
to be analyzed on such & computer, must have its equations formulated in
a very specilal way. Essentially one seeks for laws of equivalence between
the system being enalyzed and a lumped constant electrical network. The
basic laws of eguivalence between the equations of elasticity and the
equations of an electrical circuit are well known. In fact there are two
alternative sets of laws depending on whether force is made analogous to
current or to voltage. If the former alternative 1s chosen the laws of
equivalence are: Force is analogous to current, displacement 1s amnalogous
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to voltage, Hooke's law is analogous to Ohm's law, equations of equilib-
rium are analogous to Kirchhoff's law for the sum of currents entering a
node, and the equations concerning the compatibility of strains are
analogous to Kirchhoff's law for the voltages around a loop.

However much comfort these basic laws of equivalence may give they
are usually insufficient to determine the form of a lumped-constant
electrical network that is analogous to a given structure. For one thing
elastic structures are continuous rather than "lumped," and some means
mist be found for replacing the given continuous elastic structure by an
ldealized Jumped one before an electrical analogy can be fournd. This
"lumping" consists either of replacing the differential equations
governing the structure by finite-difference equations, or of employing
other devices such as concentrating normal-stress-carrying area into
equivalent flanges and shear-carrying area into equivalent panels. In
the analysis of stiffened structures this latter approach is reinforced
by the fact that much of the structure is in fact so concentrated. In
this paper both of the methods mentioned will be used.

In deriving an electrical analogy for an elastic structure an effort
should be made to preserve a one-to-one correspondence between the prop-
erties of the electrical circult and the properties of the ideallzed
structure. This correspondence means, for example, that the current in
resistor A is equal to the force in flange A' multiplied by a scale factor,
or that the voltage at node B is equal to the vertical displacement at
panel point B! multiplied by a scale factor. If such correspondences are
preserved, the analog computer can be made a useful tool for designing
as well as for analyzing structures. If a change in the cross-sectional
area of a single flange corresponds to changing the value of a single
resistor and if currents can be easily and directly converted into
internal forces, then design changes can be made very rapidly and their
effects instantly determined while the problem is set up on the analog
computer. In the present paper these correspondences are rigidly
preserved.

Another advantage of the close one-to-one correspondence of the
electrical analogy and the idealized structure 1s that it enables the
structural engineer, who is usually uninstructed in electric-circult
theory, to understand the operation of the analog computer and to use
it himself after a period of indoctrination. It has even been found
that structural engineers may be aided in their understanding of structures
by using some of the concepts of electric-clrcuit theory. This naturally
applies, a fortiori, to the electrical engineer. .

The present paper is intended as a step in the development of an
analog-computer method that is generally applicable to the solution of
alircraft structural problems. At present, analogies exist in the tech-
nical literature for beams, frameworks, flat sheets, the bending of
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plates, and the bending of platelike multicell shells. Structures
combining components of the above types can be analyzed by combining
their electrical analogies. Consequently 1t is at present possible to
analyze a great many practical alrcraft structures.

Some of the previous papers that have a direct bearing on the sub-
Ject of the present paper should be mentioned.

In 1944 Kron published a paper containing electrical analogies for
the general three-dimensional elastic~field problem and, as subcases,
analogies for the plane-stress and plane-strain problems (ref. 1). In
a companion paper, Carter worked the plene-stress problem for a deep
cantilever beam (ref. 2).

More recently anslogies have been developed for thin multicell
shells having a horlzontal plane of symmetry by using an equivalent plate
theory (ref. 3).

In 1951 Goran published a paper containing an electrical analogy
for stiffened elastic shells (ref. 4). The shells were assumed to be
conlical and to be supported by rigid bulkheads. Although the stringers
were not assumed to be parallel, the panels were assumed to be nearly
rectangular in shape. Goran used a minimum energy principle in deriving
the equations from which he developed the electrical analogy, in contrast
with the method of difference equations used in this paper.

The present investigation was conducted at the California Institute
of Technology and has been made available to the National Advisory
Committee for Aeronautics for publication because of its general interest.

SYMBOLS
Ag crosg-sectlonal area of stringer
E Young's modulus
Ty external loed normel to ring per radian of ¢
g external load tangential to ring (or skin) per radian of ¢
Fn shear force in ring
Fg,Fg' forces in stringer

Fgt, Fgg' tangential forces in panel parallel to t
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Fe axial force in ring

FigoFig' tangential forces in panel parallel to s

G shear modulus

h thickness of skin

I moment of inertia of ring cross section

M - bending moment in ring

P applied vertical load

T radius of circular shell;'radius of curvature of ring;
distance to point in rigid ring

s coordinate parallel to stringer

t coordinate perpendicular to stringer and parallel to ring

up displacement normal to axis of ring

Ug displacement parallel to s

u displacement parallel to t

ot coordinate related to ut by transformation

Y horizontal displacement of rigid bulkhead

Y horizontal direction

Z vertlcal displacement of rigid bulkhead

z . vertical direction

a angle between two adjacent stringers; angle between tangential
displacement and line to a polnt in a rigid bulkhead

v4 . shear strain of panel

5 angle by which directlon of s-axis is changed because of

transiation in t-direction
AE,A%,A¢ difference operators in s-, t-, and @-directions

bs 056,00 increments in s, t, and @
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A" = 2 sin (2g/2)

¢ angle between horizontal line and normal to center line of
undisplaced ring .

W angle between stringer and axls of shell

2 rotation about axis of shell, usually in ring

DERIVATION OF AN ANALOGY FOR A CIRCULAR NONCYLINDRICAL

STIFFENED SHELL

A sketch of a circular noncylindrical shell is shown in figure l(a).
This shell comsists of circular elastic rings to which stringers and a
thin skin covering are attached. The rings are spaced a finite distance
apart in planes perpendicular to the axis of the shell, which is assumed
to be straight. The stringers lie in planes perpendicular to the rings
and are assumed to carry axlal forces only. The sgkin 1s divided into
panels by the intersection of the stringers and rings; these panels are
assumed to carry shearing forces only, the effective normal-stress-
carrying area of the skin having been included in the cross-sectional
areas of the stringers and rings. The radius of the shell may vary in
any manner along the axis of the shell, but the radius of curvature of
the stringers is assumed to be large compared with the radius of the
shell., The angle between the axis of the stringers and the axis of the
shell need not be small provided that the rings and stringers are spaced
close enough together so that the shear panels are approximately
rectangular in shape.

The stringers and skin will be treated separately from the rings.
For the analysis of the stringers and skin it will be shown that the
rings can be represented by tangentlal externsl forces applied to the
skin along the lines of intersection of the skin and the rings.

The equilibrium and force-displacement equations will be derived
for the skin and stringers and an electrical circuit satisfying these
equations wlll be comnstructed. Then in the next section the equations
for an elastic ring will be written and a circuit satisfying these equa-
tions will be constructed. As a final step the two circuits will be
connected together to give the electrical analogy for the whole shell.
Orthogonal coordinates in the surface of the shell parallel and perpen-
dicular to the stringers as shown in figure 1(a) will be employed in the
analysis of the skin and stringers. An enlarged portion of the shell is
shown in figure 1(b). This figure shows the points where displacements
parallel to the axis of the stringers wug and displacements parallel to
the axis of the rings uy are defined.
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Figure 2 shows & portion of the skin between two adjacent rings
with its midpoint on a stringer. The total axial forces carried by the
stringer at points where the stringer passes over two adjacent rings
are Fg and Fs'. The total tangential forces acting in the s-direction

on sections passing through the centers of two adjacent shear panels are
Fts B.nd Fts ' .

The force in the stringer is continuous at the point where it passes
over a ring because of the following assumptions:

(a) The ring can exert only forces which lie in its own plane

gb) The stringer cannot support bending loads

¢) The change in direction of the stringer at the point where it
passes over a ring is negligibly small compared with the curvature of
the ring.l ‘

Consequently the ring can exert forces only in the t-direction, and these
forces can be treated as applied forces in the analysis of the skin and
stringers.

In figure 2, m/2 is the angle between the stringer and the line
of action of the shear force Fig'. This angle is approximately equal to

(l/é)v A¢ where V¢ 1is the angle between the axis of the shell and the
axis of the stringer and A¢ is equal to the angle subtended by a segment
of ring between two adjacent stringers. The cosine of the product of
these angles will be assumed to be equal to 1. Hence the equilibrium
equation for forces in the s-direction is:

Fg' = Fg + Fig' - Fy =0 (1)

]

Using difference-equation notation, equation (1) can be writtén

AgFg + [Fyg = O (2)

This notation will be used in the remainder of thls paper.

lIt is not difficult to relax this assumption to permit an appreciable
change in direction of the stringer and a consequent radial locad on the
ring. The resulting electrical circuit contains an additional transformer
at each point of intersection of stringer and ring.
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Figure 3 shows a portion of the skin between two stringers with its
midpoint on a ring. The total tangential forces acting in the t-direction
on sections passing through the centers of two adjacent shear panels are
Fgt and Fgy'. The tangential force exerted by the ring on the skin per

redien of ¢ 1s fy. The lines of actlon of the forces Fig and Fy.'

intersect the axis of the shell, so that the equation of equilibrium for
moments about this axis is

5(xFgt) - TAfEL = O : (3)

The total forces acting on perpendicular planes passing through the center
of a shear panel are Fyg and Fgi. From equation (3) it is seen that

the shear stress cannot be uniform in the s-direction across the surface
of a panel if r 1is not constant. Hence the assumption that the panel
carries only shear stresses is incorrect. The secondary normal stresses
required by equation (3) are ignored.

It will be assumed that the variation of shear stress 1s linear
across the surface of the panel, so that the value at the center of the
panel is equal to the average along & line in either the s- or t-direction.
Then a relationship between Fig and Fgt may be obtained from the

equilibrium equation of a small element at the center of the panel (see
fig. 4):

FtB — 5%t = FB't & s ()-l-)

Feg = Fgy = (5)

The equilibrium of the portion of the shell shown in figure 3 for
forces iIn a direction parallel to + at the center of the section may be
demonstrated, if desired, by means of equations (3) and (5).

The force-displacement equation for the stringers is quite easily
written. —The axlisl digp;gqgmggg‘gf‘the stringer ug; 1s defined at the
midpoints between adjacent rings as shown in figure 1(b) while the axial
force (positive for tension) is defined at points where the stringer

passes over the rings as shown in figure 2. Assuming the variastion in axial
force to be linear between adjacent points where ug 1s defined, from

Hooke's law
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_ g .
7 = % (a5 (6)

where Ay 1is the crosa-seétional area of the stringer.

The relationship between shear force and displacements for the shear
panels is less easily written because the relationship between shear
strain and the displacements 1s complicated. The displacements in the
s- and t-directions are defined at the midpoints of the sides of the
shear panel as shown in figure 1(b). The shear strain of the panel is
defined as the distortion of the angle between two . lines passing through
the midpoints of the sides. In computing this angle care must be taken
to eliminate apparent distortion due to rigid body rotation gbout the
axis of the shell. From figure 5, the shear strain

7 =71+ 7, (7)
where
_ Opus
T (&)
72 = % -5 (9)

end 3 dis the angle by which the direction of the s-axis, drawn through
the center of the panel, has been changed because of translation parallel
to the t-axis. For small displacements this angle is

where V 1is the angle between the axis of the shell and the s-axis.
From figure 2 it can be seen that

O - siny (11)
ds
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Combining equations (9), (10), and (11),

= éEEE - EE.QE . (12)

Assume that the first term on the right can be replaced by the
equivalent partial derivative evaluated at the center of the panel

,23_%_-2“5?3_:3(‘%) (13)

Replace this equation by its finite difference equivalent and obtain
from equations (7), (8), and (13):

fotme) ;. x p(2) (14)

The shearing strain is related to the total tangential force acting
on the panel by the following equation

Y =

o

L

_ 8
Y =& (15)

d

where h 1is the thickness of the skin. Hence the force-displacement
equation for the panel is

Ftg = Gh _I:At( + 28 As( )] | (16) |

The equations that are essential for the construction of an electrical
analogy are summarized below. The equilibrium equations are:

OgFg + AFig = O (172)
A (TFgy) - AtEy = 0 (17v)
Fig = Fat A8 (170)

At
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The force-displacement equations are:

Fg = %‘-(Asus) (17a)
Fig = Gh %[At(us) + -f-é—t AS(E:_H (17e)

These equations have been derived by assuming the normal-stress-
carrying area of the shell to be concentrated in stringers. They can
also be derived from the differential equations for a membrane shell of
revolution (ref. 5) by replacing differential operators by finite 4if-
ference operators. This l1s an important fact because it extends the
applicability of the equations to certain unstiffened shells.

In the electrical analogy forces are analogous to currents and
displacements are analogous to volitages. The complete circuit is shown
in figure 6. This circuit consists of two separate parts. In one part
the voltages to ground are the displacements ug while in the other

part the voltages to ground are the rotations ut/r. The two circuits

are coupled together by means of ideal transformers. Transformer coils
which are coupled together are indicated by circled numbers. Points at
which each one of the above equations are satisfied are indicated by
letters in the circult. Equation (l7a) is satisfied by the currents
entering a node of the wug circuit. Equation (17p) is satisfied by the

currents entering a node of the wut circuit. Equation (17c) is satisfied

by the currents flowing in the windings of a transformer whose turns
ratio 1s rAt/As. Eguation (17d) is satisfied by a resistor whose value
in ohms is As/EAg. In equation (1T7e) the increment in ug in the

t-direction is added to a fraction of the increment in ug/r in the

s-direction. This addition is accomplished by the same transformer which
satisfies equation (l7c). The sum of these terms is the voltage across

a resistor whose value is A&/GhAs and through which a current equal

to Fgg Tlows.

Two observations can be made concerning equations (17) and the
resulting circuit. If r does not depend on s, the equations are those
of a cylindrical shell, and r may be removed from inside the difference
operators. Hence the equations of & noncylindrical shell have the same
form as the equations of a cylindrical shell if rotatlion about the axis
ut/r (rather than tangential displacement) and torque sbout the axis

rFg¢ (rather than tangential force) sre used as variables. The rotation

and torgue about the axis are the natural variables to use in deriving
the equations of a circular noncylindrical shell.
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Equations (17) also apply with slight modification to the skin and
stringers of & noncircular cylindrical shell. In this case r dJdepends
on t rather than on s, but this dependency on t will not enter
into the derivation of the equations for the skin and stringers. Hence
for a noncircular cylindrical shell, r can be eliminated from equa-
tion (17e) and can be divided out of equation (17b) to give

N(Fgt) - Oty = 0 (18)

Since £f 1s the external tangential force per radian of ¢, A¢ft is
the total external tangential force per bay in the t-direction.

In figure 6 parts of the wu circuit corresponding to different

values of t are not shown connected. The interconmection is accomplished
by means of the currents Atfy which are the reactions of the rings.

The voltages at the points where these currents are inserted are con-
strained to be equal to the corresponding values of ut/r for the rings.

A complete circult for a shell, including the circuits for elastic rings,
will be shown later. If the rings are assumed to be rigid, the circuits
for the rings become quite simple as will be shown.

DERIVATION OF AN ANALOGY FOR AN ELASTIC RING

An electrical analogy for the bending of a ring in its own plane
will be derived in this section. In the discussion of shells supported
by rings it is usually assumed that the rings are perfectly free to warp
out of their own planes. An electrical analogy for a circular ring
deforming perpendicular to its own plane has been derived by Russell
(ref. 6), but this effect will not be considered here.

It will also be assumed that the effects of shearing stiffness and
axlal stiffness of the ring are small so that these effects can be
ignored. Thils assumption is made in order to simplify the discussion;
these effects can be included in the electrical analogy if desired. In
addition the eccentricity of the ring, that is, the distance between the
neutral axis of the ring and the point of attachment to the skin, will be
assumed to be zero. This lmportant effect can also be included in the
electrical analogy.

An element of ring is shown in figure 7. The displacement quantities
to be used in the ansalysis of the ring are the normal and tangential
displacement of the center line and the rotation of the normal to the
center line. The Independent position variable ¢ is the angle between
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a horizontal line and the normal to the center line of the unloaded ring.
The external tangential and normal loads per radian of ¢ applied along
the center line of the ring are £t and £. Distributed moment loads
will not be considered. It will be noted in figure T that the radius of
curvature is not assumed to be constant.

The loads, internal forces, and dlsplacements of the above desecribed
ring satisfy the following six first-order differential equations. The
equilibrium equations are:

.Z%E =Fg - £y (19)
%‘2 = -Fp - Ty (20)
%% = Fyr (21)

The stress-strain and strain-displacement equations are:

de _ Mr |
ag = (22)
Quy _
d¢ ug + or . (23)
——d = e
d;t _ (oh)

These equations will be replaced by the corresponding first-order
difference equations. In so doling central difference equations will be
used so that the quantities appearing behind the derivative symbols in
the above equations are defined at values of ¢ midway between the values
of ¢ at which the undifferentiated quantities are defined. For example,
equation (19) may be approximated by the following equation:

(R - (Ra)g = [(30), - (50), |29 (25)
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The same difference-equation notation can be used for this equation
as was used In the previous section: ’

Affn = (P ~ £0) P (26)

Position subscripts are not required in this equation. The quantities
un, Ft, and M are defined at the same points and these points are mid-

wey between the points where 6, uy, and F, are defined.

Equations (20) to (24) could be replaced by simple difference equa-
tions in the same manner that equation (19) was replaced by equation (26).
However, it can be demonstrated that the following difference equations
are more accurate. They give exactly correct results for a segment of
ring which is rigid, has constant radius of curvature, and is uniformly
loaded. In other words, for any complete ring with constant radius of
curvature, they give correct results for rigid body displacements and
the statically determinant parts of the internal forces. These statements
require lengthy proofs and instead of the proofs being given they will be
partially demonstrated later by means of an example.

The equilibrium equations are:

Affn = (Fg - fn) (2 sin > (27)
Ay = ~(Fn + %) (2 sin _A_Q) (28)

A¢M = -Fn(2r sin 2> (29)

The stress-strain and strain-displacement equations are:

AP =§—‘§QM (30)

Aoy, = (ug + T0) (2 sin ézﬂ) (31)
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Ao = -un(e sin ézié) (52)

For small values of AP, 2 sin (Af/2) is approximately equal to AP
and the above equations approach the corresponding simple central-

difference equations. The chord subtending the arc A¢ is r(E sin %?).

An electrical circuit which identically satisfies the above equations
is shown in figure 8. In this circuit displacement quantities are voltages
to ground and the loads and internal forces are currents. Equation (29)
is satisfied by the currents entering a Jjunction in the upper circuit of
figure 8. Egquations (27) and (28) are similarly satisfied by the currents
in the middle and lower circuits of figure 8. Ideal transformers are used
to0 produce currents flowing into the Junctions of one circuit that are
proportional to the currents flowing in the "main line" of another circuit.

Equation (30) expresses Ohm's law for the drop in voltage between
successive nodes of the upper circuit. Equation (31) is satisfied in the
main line of the middle circult by means of ideal transformer coils which
insert voltages in the line proportional to the voltages to ground in the
other two circuits. Equation (32) is simllarly satisfied in the lower
circuit. Each transformer is instrumental in the satisfactlion of two
equations, an equilibrium equation and a strailn-displacement equation.
The circuit of figure 8 employs three transformers per cell. If the
radius of curvature of the ring is constant (fig. 9 a)), or if the ring
can be divided into segments containing several cells for each of which
the radius of curvature is constant, a cirecult requiring only two trans-
formers per cell can be used. Since r is now assumed to be constant,
equations (27) to (32) can be rewritten as follows (where 2 sin Ag/2
has been abbreviated by Ag'):

AfFn (Ftr)é;@ - £ 08 (278)

“Fp(rag') + (ftr)é¢' (28a)

24 (F47)
A = -Fn(r$¢ ") (292)

A = E M (30e)
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Ay, = [Ert - (-e)]mgﬁ' (31a)

2y(39)- () (s2a)

In this form of the equations ut/r and Fyr replace u, and Fy

as variables as in the case of the skin and stringers for a noncylindrical
shell. The purpose of this manipulation has been to get equation (31a)
into the form shown, where the increment in wu, is proportional to the

difference of the other two displacement quantities. This equation can
be satisfied by a single transformer whereas equation (31) required two
transformers. A circuit satisfying equations (27a) to (32a) is shown
in figure 9(b). In this figure the transformer coils connecting the
upper and middle circuits are coupled to the transformer coils in the
main line of the lower circuit. This remote coupling is indicated by
clrcled numbers. The currents corresponding to the loads are not shown
in this circuit. :

CIRCUITS FOR RIGID RINGS

It 1s frequently possible to assume that some or all of the rings
supporting a shell are rigid in their own planes without serious error
in the analysis of the shell. Thils assumption greatly simplifies auwalyt-
1cal solutions of shell problems and sometimes elimlnates a great deal
of the equipment required in an anaslog-computer solution. Since it is
assumed here that only the tangential displacement of the ring is impor-
tant In the analysis of shells, this 1s the only coordinate that need be
represented at polnts around the perlphery of a rigid ring.

The position of a rigid bulkhead is determined by the displacement
of one of its points in two perpendicular directions and by the rotation
about an axis perpendicular to its plane (as shown in fig. 10(a)). The
tangential displacement at points on the periphery can be computed from
these three quantities

up, =Y sin § + Z cos § - Or sin a (33)

In an analytical solution Y, 2, and 6 are unknown quantities. They
are usually regarded as Laegrangian multipliers and equation (33) is
regarded as an equation of constraint. In an electrical amnalogy this
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equation of comstraint can be satisfied by a network of transformers, a
general form of which is shown in figure 10(b). This network also
satisfies the equilibrium equations of the rigid ring. Applied loads

in the y- and z-directions and applied torque are inserted as currents
into the network as shown. Since, in general, this circult requires
three transformers for each tangential displacement it has no advantage
over an elastic ring circuit in which the resistors corresponding to the
bending stiffness of the ring are set equal to zero. However, in prac-
tice, one or more of the terms in equation (33) may be equal to zero
because elther the unknown or the coefficient may vanish.: In such cases
the transformer network may be quite simple.

For example, in a shell with a vertical plane of symmetry, loaded
symmetrically with respect tq this plane,

ug = 2 cos ¢ (34)

This equation requires one transformer for each value of ug. It is

possible to introduce further simplification by replacing ut by a
variable which depends on @. Let

ut = ug cos P (35)
then
iy = 2 (36)

If this change of variable is now introduced into the equations of the
skin and stringers (eq. (17)), it will be found that the form of the
equations will remain vmchanged and that the only effect will be a change
in the turns ratio of the transformers coupling the ug and u; circuits.

Equaetion (36) is then satisfied by comnecting together all the tangential
displacement nodes in any one ring.

As another example consider a rigid ring (or bulkhead) which is very
thin in one direction (see fig. 11(a)). In this case it may be assumed
that the angle between the y-axis and the top end bottom surfaces of the
shell is small everywhere except at the ends, where there are closing
vertical segments. Furthermore it is usual to assume that Y, +the
displacement parallel to the long direction, is zero. In this case
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ug = -0r sin « top and bottom surfaces
ug, = Z - (6c/2) at left end (37)
ug, = -Z - (8c/2) at right end

Here again scale factors can be introduced to simplify the equations:

ﬁt = - i =8 top and bottom surfaces
r sin o
ﬁtl = up, = Z - (ec/2) at left end L (38)
g, = o, = z + (6c/2) at right end
J

These equatlons are satisfied by the simple network of figure 11(b).

With this circuit for a rigid bulkhead and the circuit for the
stringers and spars (fig. 6), two spar box wings with unsymmetrical top
or bottom surfaces can be analyzed. The extension to multispar wings is
simple and direct.

SOLUTION OF PROBLEMS

The Cal-~Tech analog compubter (ref. 7) was used for the solution of
two problems in comnection with the preparation of this paper. This
computer consists essentially of a storehouse of electrical parts which
contains, among other things, the resistors and high-quality transformers
required in the solution of stress-analysis problems.

The first problem was the analysis of the simple circular ring
shown in figure 9(a) subjected to two opposing concentrated radial loads.
Because of the symmetry of the ring and. its loads & quadrant of the ring
can be substituted for the whole if proper boundary conditions are applied
-at the ends of the quadrant. At ¢ = 0 the proper boundary conditions
are that 6, wut, and Fp equal zero. At @ = n/2 the proper boundary

conditions are that © and uy equal zero and that F, equals P, one~
half of the applied load.
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In figure 9(b), the quadrant of ring has been represented by a
circuit containing four cells. The boundary conditions have been
satisfied by setting the corresponding electrical quantities equal to
zero at the two ends.

The results of the analysis are presented in table I in dimensionless
form. An exact analysis of the problem using differential equations 1s
compared with the analog-computer solution. In addition an exact solution
of the difference equations governing the electric circuit is shown. It
will be seen that the differential-equation solution and the exact solu-
of the difference equations give identical results for the internal shear
and internal axial force. This was to be expected since these quantities
are statically determinate in the problem investigated. The other quan-
tities show errors due to finite-difference approximation. A comparison
of the difference-equation solution and the analog-computer solution
shows errors in the computer solution of the order of 1 or 2 percent,
which is fairly typical of the results customarily obtained with the
Cal-Tech analog computer.

The second problem was the analysis of a conical shell supported by
circular elastic rings. As such it provides an example illustrating the
menner in which the shell and ring circuits are intercomnected. The
structure, which has 3 elastic rings and 14 stringers, is shown in fig-
ure 12(a), and specifications- for the structure are given in table IIT.
This structure is supposed to resemble the aft portion of an aircraft
fuselage. The structural weight is divided approximately equally between
the skin, stringers, and rings. The rings are somewhat stiffer than those
employed customarily in fuselage construction. The number of stringers
and the number of rings in the structure are much fewer than the number
that would be employed in an aircraft fuselage, so that each stringer of
the structure represents several stringers in the fuselage, and the stiff-
ness of intermediate fuselage rings 1s included in the stiffness of the
three main rings shown.

The shell is subjected to symmetrical concentrated vertical loads
applied to the ring at the small end of the shell and these loads are
reacted at the large end, which is built into a rigid wall. Because of
the symmetry of the structure and the applied loads, only a quarter of
the shell need be considered if appropriate boundary conditions are applied.
This part of the shell has been given a two-coordinate nmumbering system
for the identification of points in the structure. For example, point 42
refers to a point at the intersection of ring number 4 and stringer number 2.

The electrical analogy for the strucbure is also shown in figure 12.
This circuit consists of three parts, the ug; and ug circuits and the

ring circuits. In figure 12(v) only one ring circuit is shown since the
other two have an identical appearance. The connections between the ring
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circult shown and the uy circuit are indicated by the circled letters a,
b, and c. Currents corresponding to the interaction forces between the
skin and the rings flow through these connections.  In figure 12(a) a
cutout is indiceted in the middle bay. Electrical parts corresponding

to the cutout (shown dotted in figs. 12(c) and 12(d)) are removed when
the cut panel is removed.

The boundary conditions at the vertical plane of symmetry are that
the shear stresses in shear panels Intersected by this plane are zero
and that in the ring circuits 6, wug, and Fp are all zero except when

vertical loads are applied to the ring in the plane of symmetry, in which
case Fp 1s equal to P, one-half of the applied load. The boundary

conditions at the Horizontal plane of symmetry are that the displacement
in the s-direction ug 1s zero and that in the ring circuits u,, M,

and Fg are zero except when vertical loads are applied to the ring in
the horizontal plane of symmetry, in which case Ft 1s equal to -P.

The boundary conditions at the large end of the shell are that both ug

and uy are equal to zero. At the small end the boundary conditions are

conveniently expressed as the absence of applied loads except as indicated.
A1l of the sbove boundary conditlions have been satisfied In the electrical
clircuit by means of short and open circults. Short circuits are used to

set displacements equal to zero while open circults are used to set internal
forces equal to zero.

The electrical circults shown in figure 12 use 27 resistors and
27 transformers. In calculating the values of the transformer turns
ratios and resistors to be used in the circuit it is necessary to make
use of scale factors. This aspect of the problem has been omitted in
the present discussion in order that the electrical quantities shown in
the circult disgram may have a direct significance in terms of mechanical
quantities. A brief discussion of the scale~factor methods employed with
the Cal-Tech analog computer is given in the appendix of reference 8.

The structural and loading conditions that were Investigated in this
problem are given in table IT. It was desired to investigate the effect
of the following things on the distribution of internal forces: The
effect of the stiffness of the rings, the effect of the location of the
vertical load on the end rings, and the effect of a cutout in the middle
bay. '

The results of these investigations.are given in table II. The
quantities recorded according to the numbering system previously dis-
cussed are the stringer forces Fg, +the panel shears Fio, the ring

bending moments M, and the vertical displacements. The vertical dis-
placements have been obtained by vectorially combining the tangential
and normal displacements of the rings. The tabulated results are subject
to experimental errors and when four significant figures are given the
fourth figure 1s entirely unrelisble.
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The main conclusion to be drawn from these results is that for the
shell tested and the loads which were applied the stiffness of the rings
has a rather small effect on the distribution of internal forces. The
only change made between conditions (1) and (2) was that in condition (2)
the rings were made five times as stiff as in conmdition (1). It will be
seen that the stiffness of the rings has very little effect on the
internal forces except between the second and third rings. However, the
distortion of the third ring in condition (l), as given by the vertical
displacements, 1s significant. In another condition, the results of
which are not tebulated, the first and second rings were stiffened by a
factor of 10 while the third ring retained its normal stiffness. The
difference in the results between this condition and condition (1) was

negligible.

The results of condition (3) indicate that the effect of ring stiff-
ness is considerably less when the applied vertical loads are in a
horizontal plene than when they are in a vertical plane. The results of
conditions (4) and (5) indicate that even moderately small symmetrical
cutouts produce a severe redlstribution of the internal forces and that,
in this case, the effect of ring stiffness is important if accurate
results are desired.

California Imstitute of Technology,
Pasadena, Calif., November 25, 1953,
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TABLE I.- SOLUTION OF CIRCULAR-RING PROBLEM WITH

FOUR FINITE-DIFFERENCE CELLS PER QUADRANT

A Differential | Difference | Analog
Quantity ¢( °) equations equations | computer

F 22.5 0.3827 0.3827 0.387

-I-fl 45.0 .T0T7L .TOTL .702

67.5 .9239 .9239 .922

11.25 0.9808 0.9808 0.982

Fy 33.75 .8315 .8315 .82k

P 56.25 5556 .5556 .566

78.75 .1951 L1951 .210

11.25 0.34h2 0.3401 0.340

M 33.75 .1948 .1907 . .192

Pr 56.25 -.0810 -.0851 -.083

78.75 -5 =156 -7
9 22.5 0.1327 0.13%5 0.1338
pr2 | 15.0 2071 .2084 .206h
o 67. 1739 .1750 .1703
ug 22.5 0.0487 0.051k4 0.0515
Pro 45.0 .0706 LOThT 0756
ET 67.5 .0515 .0548 .0559
u, 11.25 ~-0.1271 -0.1318 -0.1310
o3 33.75 -.0573 -.0596 -.0586
Pr- 56..25 .0493 .0509 L0535
ET 78.75 .13k9 JAh05 1435
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TABLE IT.- RESULTS FROM STUDY OF CONICAL SHELL

[Specificationa faor shell: Number of stringers, 1k4; cross-section aree
of stringers, 0.60 sq in.; thickness of skin, 0.030 in.; Young's

modulus, 10.k x 106 psi; and shear modulus, 4.0 x 106 psi. P=1l kip:I

Condition
Panel
point 6B (2) (3) (%) (5)
(a) (v) (c) (a) (e)
Stringer forces, Fg, kips
2 -0.945 -0.945 -0.942 -0.330 -0.5T7
L -1.708 -1.708 -1.708 -1.550 -1.632
6 -2.118 -2.050 -2.124 -2.475 -2.300
22 -.688 ~. 711 -.T22 LT6T .688
24 ~-1.282 -1.28 -1.291 -1.409 ~1.321
26 -1.612 ~1.59%% ~-1.587 -2.124 -2.180
ko ~.308 -.380 ~.152 -1.783 ~1.789
Ly -.676 -.T1h .75 -.536 ~-.650
46 -1.002 -.935 -.882 -5 -.326
Panel shears, Fig, kips
11 1.206 1.195 1.191 1.593 1.726
135 954 .956 .963 -509 .h69
15 .513 .53L 536 372 .155
31 1.596 1.550 . 1.522 0 o
33 1.217 1.231 1.25% 2.537 2.457
35 .618 661 .TOT 1.687 1.838
51 1.985 2.046 2.080 2.740 2.789
53 1.685 1.662 1.632 .99k 1.032
55 1.013 937 .880 93 1) 334
Ring bending moments, M, in-kips
22 -0.07 ~0.0% 0.02 3.58 k.08
24 -.03 -2 .0L .96 1.28
26 .06 .02 -.02 -2.40 -2.8
k2 .20 .05 -.08 -3.72 -3.88
4y .10 .0L -.02 -1.08 -1.28
L6 -.18 -.07 .06 2.48 2.64
62 k.45 L.36 -2.28 5.53 5.5
64 3.8, 3.52 ~-.56 .12 3.88
66 ~5. -5.65 1.4y -5.93 -6.45
Vertical displacements, in
22 0.0288 0.028%5 0.0282 0.0133 0.0247
24 .0290 .0286 .0288 L0262 L0282
26 .0283 .0283 .0283 .0592 .0336
4o .0875 .08n .0876 .2180 .1887
Ly .0880 .0872 .0870 .2105 .1870
46 .0895 .0885 .0860 .1912 .1830
62 L1577 .1670 1735 .2595 .2515
6h .1660 .1701 1702 .2660 .2530
66 .1926 L1770 L1627 .3005 .2605

80ondition (1):
cutouts. Moment of

beondition (2):
factor of 5.

SCordition (3):
(see fig. 12(a)).

dcondition (4):
(see £ig. 12(a)).

€Condition (5):
factor of 5.

Vertical loads applied tg points A and A' of end ring (see fig. 12(a)). No
inertia of rings, 5.33 in.%.
Same as condition (1) except moment of inertis of rings increased by a
Same as condition (1) except vertical loads applied to points B and B'
Same as condition (1) except with symmetrical cutouts in center bay

Same as condition (h-) except moment of inertia of rings increased by a

23
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(a) Segment of shell showing orthogonal coordinates.

s

(b) Enlarged portion of shell showing displacements.

Figure 1.- Circular noncylindrical stiffened shell.
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Figure 2.- Equilibrium of portion of shell between two adjacent rings
with center on a stringer.
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Figure 3.- Equilibrium of portion of shell between two adjacent stringers
with center on a ring.

Figure 4.- Equilibrium of shearing forces in a panel.
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Figure 5.- Shear strain of a panel.
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Figure 6.- Electrical analogy for stringers and skin of a circular
noncylindrical shell.
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(b) Displacements.

Figure T.- Segment of a ring showing epplied loads, internal forces,
and displacements.
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(a) Ring and loads.
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(b) Analog circuit for quadrant of ring.

Figure 9.- Electrical analogy for a circular ring subjJected to concentrated
loads.
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Figure 10.- Electrical analogy for a rigid bulkhead.
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Figure 11.- Electrical analogy for a flat rigid bulkhead.
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(b) Typical ring circuit (3 required).

Figure 12.- Electrical analogy for conical-shell problem.
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